Decades of experience and excellent performance

ALMiG is one of the leading compressed air technology system providers and has decades of experience delivering premium products in the compressed air sector. Companies all around the world trust in our customer focused solutions, our quality, innovation and flexibility. Our advanced compressor technologies combine excellence with the quietest possible running performance, optimal energy efficiency and particularly careful conservation of resources.

Ongoing development and comprehensive industry knowledge

Constant research and development form the essential foundation for the efficiency of every system manufactured by ALMiG. Only these constant enhancements and improvements enable us to react quickly and flexibly to individual customer wishes. This attitude is complemented by a comprehensive understanding of the sector: we understand the challenges that our customers are faced with and the requirements that arise as a consequence. ALMiG offers effective solutions for a wide range of applications — from small craft workshops to medium-sized companies to big industry.

Complete service and maximum availability

The highest quality technological solutions deserve an equally high level of service. The ALMiG service provisions offer our customers a complete service programme: from providing comprehensive advice to ensuring availability, improving cost-effectiveness and developing energy-saving potential. As an expert partner, ALMiG offers its customers advice and support on all issues. Our goal is to contribute to your economic success with our service offerings.

ALMiG:
Compressor Systems
Made in Germany
Piston compressors
Screw compressors
Turbo compressors
Scroll compressors
Special installations
Controllers
Compressed air treatment
Services
SCREW COMPRESSORS
From 3 kW to 500 kW

+ Maximum reliability in continuous operation
+ Minimise your operating costs with energy-efficient compressors
+ ALMiG probably has the most comprehensive range of screw compressors on the market
+ The right drive concept for any application

Compact and cost-effective
COMBI series
5.5 – 22 kW
p. 14

High performance with direct drive
DIRECT series
37 – 315 kW
p. 22

Compressor output with endurance
G-DRIVE and V-DRIVE
30 – 75 kW
p. 6

Best efficiency in class
G-DRIVE T
90 – 250 kW
S. 10

Powerful and versatile
BELT series
4 – 37 kW
p. 18
Compact, quiet and powerful

FLEX series
5.5 – 30 kW
p. 30

High delivery volume that packs a punch

GEAR series
30 – 500 kW
p. 26

Energy savings with SCD technology

VARIABLE series
16 – 355 kW
p. 34

Oil-free compressed air of outstanding quality

LENTO series
15 – 130 kW
p. 38
The G-DRIVE and V-DRIVE series offer consistently high performance as well as numerous features for particularly reliable, energy-efficient operation and convenient maintenance. There are various useful extensions available for the latest generation of ALMiG screw compressors: an efficient heat recovery system with a constant temperature, an integrated refrigeration dryer which is precisely designed for the delivery volume of the system, as well as the latest controllers to network your entire compressed air station. The system extensions do not affect the footprint of the compressor at all.

Optional integrated refrigeration dryer
In this version, the refrigeration dryer is integrated in the system to save space. The compressor is used to supply the dryer with power, control it and protect it against freezing if operated at ‘underload’. The parameters of the refrigeration dryer are exactly tailored to the respective kW class and the dryer cannot be ‘bypassed’.

Energy-saving speed control
All variants are also optionally available with energy-saving speed control.

This is where the highly efficient direct drive comes into play: the high-frequency drive motor operates with outstanding efficiency over the entire speed range.

The operating pressure can be adjusted steplessly from 5 to 13 bar. The high-quality frequency inverter is easy to access in the control cubicle – an optimised cooling air guide provides optimum ventilation. Inverters and cables are electro-magnetically shielded.

Heat recovery system
All our systems are designed so that an integrated heat recovery system can be fitted into them – either directly at the factory or as a subsequent retrofit. With this system, the energy consumed for the generation of compressed air can be converted almost entirely to usable heat; for example, as hot water for feeding into heating systems or for heating process water or industrial water. The constant temperature of the heat recovery system ensures reliability.

Reduced service costs
The G-DRIVE and V-DRIVE screw compressors are very easy to maintain: all components are easily accessible from one side and the large sound-insulating doors are easy to remove. This reduces the maintenance and downtimes to a minimum, and ensures that the service costs are completely manageable.
Suitable controllers:

AIR CONTROL B
Standard

AIR CONTROL P
Optional

AIR CONTROL HE
Optional

Base frame
Torsion-resistant, liquid-tight

Highly efficient motor-compressor unit
Energy efficiency class IE 3

Optional heat recovery system

Maintenance-friendly design

Air Control
Smart controller that monitors, visualises and documents
G-DRIVE / V-DRIVE

50 Hz

<table>
<thead>
<tr>
<th>Model</th>
<th>Volume flow (m³/min)</th>
<th>Rated motor power (kW)</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
<th>Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>5.46</td>
<td>30</td>
<td>1681</td>
<td>959</td>
<td>1635</td>
<td>860</td>
</tr>
<tr>
<td>37</td>
<td>6.54</td>
<td>37</td>
<td>1681</td>
<td>959</td>
<td>1635</td>
<td>885</td>
</tr>
<tr>
<td>45</td>
<td>7.90</td>
<td>45</td>
<td>1900</td>
<td>1100</td>
<td>1725</td>
<td>1250</td>
</tr>
<tr>
<td>56</td>
<td>9.79</td>
<td>55</td>
<td>2300</td>
<td>1380</td>
<td>1950</td>
<td>2120</td>
</tr>
<tr>
<td>75</td>
<td>13.54</td>
<td>75</td>
<td>2300</td>
<td>1380</td>
<td>1950</td>
<td>2241</td>
</tr>
</tbody>
</table>
50 Hz

<table>
<thead>
<tr>
<th>V-DRIVE</th>
<th>Volume flow acc. to ISO 1217 (Annex C-1996)</th>
<th>Rated motor power</th>
<th>Length</th>
<th>Width</th>
<th>Height</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8 bar m³/min</td>
<td>10 bar m³/min</td>
<td>13 bar m³/min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>m³/min</td>
<td>m³/min</td>
<td>m³/min</td>
<td>kW</td>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>30</td>
<td>1.84 - 5.16</td>
<td>1.81 - 4.62</td>
<td>1.77 - 3.88</td>
<td>30</td>
<td>1702</td>
<td>959</td>
</tr>
<tr>
<td>37</td>
<td>1.84 - 6.21</td>
<td>1.81 - 5.58</td>
<td>1.77 - 4.74</td>
<td>37</td>
<td>1702</td>
<td>959</td>
</tr>
<tr>
<td>38</td>
<td>2.42 - 6.76</td>
<td>2.37 - 5.89</td>
<td>2.30 - 4.94</td>
<td>37</td>
<td>1900</td>
<td>1100</td>
</tr>
<tr>
<td>45</td>
<td>2.43 - 7.90</td>
<td>2.39 - 6.98</td>
<td>2.32 - 5.91</td>
<td>45</td>
<td>1900</td>
<td>1100</td>
</tr>
<tr>
<td>56</td>
<td>3.99 - 10.02</td>
<td>3.91 - 8.95</td>
<td>3.80 - 7.75</td>
<td>55</td>
<td>2300</td>
<td>1380</td>
</tr>
<tr>
<td>75</td>
<td>3.96 - 13.00</td>
<td>3.89 - 11.58</td>
<td>3.77 - 9.62</td>
<td>75</td>
<td>2300</td>
<td>1380</td>
</tr>
</tbody>
</table>
G-DRIVE T

Highest efficiency in class

With the two stage G-Drive T series ALMiG sets new standards in energy efficiency. By compressing air in two stages they achieve a specific performance which is at the highest level. Therefore, the G-Drive T compressor series offers a higher volume flow with a lower input power consumption, in comparison to an equivalent single stage compressor. Low rotational speeds and lower internal compression ratios within the compressor stages increase the efficiency, reliability and lifetime of the compressor elements. State of the art efficiency, coupled with a low sound level and low service costs, makes the 2-stage technology very interesting for industrial compressed air users.

The G-Drive T offers all these benefits, plus a compact footprint due to its well-thought-out design. With a look to Industry 4.0, the controller of the compressor has all the required functionalities to communicate with common industrial company systems. Or simply use the cloud service to monitor the compressor from anywhere.

Advantages:
- Due to the high efficiency of the compressor maximum energy savings can be achieved and the life cycle costs of the machine can be reduced
- Up to 15% greater energy savings in comparison to a single stage compressor
- Durable and reliable
- Low differential pressures
- Reduced heat load
- Easy maintenance and service

The unique design of the airend integrates the first and second stage into one compressor element. The rotors of both air ends achieve the optimal speed due to the gear drive.

An efficient compression is achieved by using a cooling oil mist for interstage cooling. This controlled amount of oil enables at the same time to avoid condensate in the second stage. A complicated and expensive separate interstage cooling is not necessary and reliability increases.

G-DRIVE T

Highest efficiency in class

+ Efficient screw compressor technology
+ Low rotational speeds together with lower internal pressure ratios ensure a long durability
+ Efficiency and ease of maintenance made for lower life cycle costs

Application:
Industry

Power output
90 – 250 kW

Volume flow acc. to ISO 1217
14.6 – 51.5 m³/min

Operating pressure
5 – 13 bar

Cooling
Air-cooled

Drive
Gear

Motor
Energy efficiency class IE 3, IP 55 protection, protection class F
Energy-efficient IE3 Motor with long bearing life

Stable base frame
Sealed against leaks, with vibration dampeners

Heavy duty suction filter
Best possible filtration and easy maintenance

Oil lubricated two stage compression
Best possible efficiency, integrated gear drive and robust durable design

Industry 4.0
Smart controller that monitors, visualises and documents

AIR CONTROL HE
Standard

Controllers starting on p. 42
G-DRIVE T

50 Hz

<table>
<thead>
<tr>
<th>Modell</th>
<th>Volume flow acc. to ISO 1217 (Annex C-1996)</th>
<th>Rated motor power</th>
<th>Length</th>
<th>Width</th>
<th>Height</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8 bar m³/min</td>
<td>10 bar m³/min</td>
<td>13 bar m³/min</td>
<td>kW</td>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>90</td>
<td>18,2</td>
<td>16,3</td>
<td>14,6</td>
<td>90</td>
<td>2900</td>
<td>1860</td>
</tr>
<tr>
<td>110</td>
<td>22,0</td>
<td>19,2</td>
<td>17,8</td>
<td>110</td>
<td>2900</td>
<td>1860</td>
</tr>
<tr>
<td>132</td>
<td>26,1</td>
<td>23,2</td>
<td>21,5</td>
<td>132</td>
<td>2900</td>
<td>1860</td>
</tr>
<tr>
<td>160</td>
<td>32,3</td>
<td>28,6</td>
<td>26,5</td>
<td>160</td>
<td>3520</td>
<td>2290</td>
</tr>
</tbody>
</table>
50 Hz

<table>
<thead>
<tr>
<th>G-DRIVE T</th>
<th>Volume flow acc. to ISO 1217 (Annex C-1996)</th>
<th>Rated motor power</th>
<th>Length</th>
<th>Width</th>
<th>Height</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8 bar</td>
<td>10 bar</td>
<td>13 bar</td>
<td>kW</td>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>Modell</td>
<td>m³/min</td>
<td>m³/min</td>
<td>m³/min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>40,5</td>
<td>35,0</td>
<td>31,0</td>
<td>200</td>
<td>3350</td>
<td>2350</td>
</tr>
<tr>
<td>220</td>
<td>44,5</td>
<td>38,7</td>
<td>34,2</td>
<td>220</td>
<td>3350</td>
<td>2350</td>
</tr>
<tr>
<td>250</td>
<td>51,5</td>
<td>45,3</td>
<td>40,0</td>
<td>250</td>
<td>3350</td>
<td>2350</td>
</tr>
</tbody>
</table>
Our COMBI screw compressors are a highly cost-effective 4-in-1 solution: The compressed air station combines

- a compressor,
- compressed air receiver (with manual shut-off, and also with an automatic condensate drain as an option),
- refrigeration dryer and
- pre- and after-filters

in one housing as standard. The series thus fulfills the high quality requirements for compressed air for pneumatic applications specified by DIN ISO 8573-1.

Requiring the smallest possible space and emitting very low noise levels, the machines of the COMBI series can be installed exactly where the compressed air is needed, saving your company major investments in expensive pressure lines. The belt-driven systems of the COMBI series are used in applications ranging from practical trades to heavy-duty industry.

In small-scale workshops, the compressors guarantee a reliable supply of compressed air while, in industry, the COMBI products serve as an individual decentralized compressed air solution.

Other benefits of these compact systems include their low weight and therefore the ease of transport. All it takes is a lifting truck or a fork-lift truck to install the ready-to-connect and ready-to-use compressed air station on site.

The product range

2 different system sizes:

- COMBI 6 – 15: 270 l standard / 500 l optional
- COMBI 16 – 22: 500 l standard

All the compressors in the series are available:

- with/without receiver
- with/without refrigeration dryer
- with/without compressed air filter
- with various controllers to suit your needs

Application

Trade, small-scale industry

Power output

- COMBI II: 5.5 – 15 kW
- COMBI III: 15 – 22 kW

Volume flow acc. to ISO 1217 (Annex C-1996):

- 8 bar: 0.82 – 3.24 m³/min
- 10 bar: 0.72 – 2.75 m³/min
- 13 bar: 0.62 – 2.54 m³/min

Operating pressure

- 5 – 13 bar

Cooling

- Air-cooled (standard)

Drive

- V-belt

Motor

- Energy efficiency class IE 3,
- IP 55 protection,
- protection class F
Suitable controllers:

AIR CONTROL MINI
Standard (6 – 22 kW)

AIR CONTROL B
Optional (6 – 22 kW)

AIR CONTROL P
Optional (6 – 22 kW)

AIR CONTROL HE
Optional (6 – 22 kW)

Maintenance-friendly design

Compressor stage
with low speeds

Drive motor
Energy efficiency class IE 3

Air Control
Smart controller that monitors, visualises and documents

Receiver

Treatment

Controllers starting on p.42
COMBI 50 Hz

<table>
<thead>
<tr>
<th>Model</th>
<th>8 bar</th>
<th>10 bar</th>
<th>13 bar</th>
<th>Rated motor power</th>
<th>Length</th>
<th>Width</th>
<th>Height</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0.82</td>
<td>0.72</td>
<td>0.62</td>
<td>5.5</td>
<td>1180</td>
<td>770</td>
<td>1128</td>
<td>305</td>
</tr>
<tr>
<td>8</td>
<td>1.09</td>
<td>1.02</td>
<td>0.85</td>
<td>7.5</td>
<td>1180</td>
<td>770</td>
<td>1128</td>
<td>310</td>
</tr>
<tr>
<td>11</td>
<td>1.61</td>
<td>1.43</td>
<td>1.22</td>
<td>11</td>
<td>1180</td>
<td>770</td>
<td>1128</td>
<td>316</td>
</tr>
<tr>
<td>15</td>
<td>1.96</td>
<td>1.86</td>
<td>1.61</td>
<td>15</td>
<td>1180</td>
<td>770</td>
<td>1128</td>
<td>325</td>
</tr>
<tr>
<td>16</td>
<td>2.35</td>
<td>2.02</td>
<td>1.88</td>
<td>15</td>
<td>1480</td>
<td>780</td>
<td>1375</td>
<td>454</td>
</tr>
<tr>
<td>18</td>
<td>2.75</td>
<td>2.44</td>
<td>2.25</td>
<td>18.5</td>
<td>1480</td>
<td>780</td>
<td>1375</td>
<td>473</td>
</tr>
<tr>
<td>22</td>
<td>3.24</td>
<td>2.75</td>
<td>2.54</td>
<td>22</td>
<td>1480</td>
<td>780</td>
<td>1375</td>
<td>519</td>
</tr>
</tbody>
</table>

COMBI 60 Hz

<table>
<thead>
<tr>
<th>Model</th>
<th>100 psig</th>
<th>125 psig</th>
<th>150 psig</th>
<th>190 psig</th>
<th>HP</th>
<th>inch</th>
<th>inch</th>
<th>inch</th>
<th>lbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 / 8</td>
<td>30</td>
<td>28</td>
<td>25</td>
<td>21</td>
<td>75</td>
<td>44.1</td>
<td>270</td>
<td>44.4</td>
<td>628</td>
</tr>
<tr>
<td>8 / 10</td>
<td>37</td>
<td>37</td>
<td>35</td>
<td>29</td>
<td>10</td>
<td>44.1</td>
<td>270</td>
<td>44.4</td>
<td>639</td>
</tr>
<tr>
<td>11 / 15</td>
<td>59</td>
<td>55</td>
<td>48</td>
<td>42</td>
<td>15</td>
<td>44.1</td>
<td>270</td>
<td>44.4</td>
<td>650</td>
</tr>
<tr>
<td>15 / 20</td>
<td>72</td>
<td>68</td>
<td>63</td>
<td>56</td>
<td>20</td>
<td>44.1</td>
<td>270</td>
<td>44.4</td>
<td>672</td>
</tr>
<tr>
<td>16 / 21</td>
<td>86</td>
<td>81</td>
<td>72</td>
<td>64</td>
<td>20</td>
<td>58.3</td>
<td>70.1</td>
<td>54.1</td>
<td>1001</td>
</tr>
<tr>
<td>18 / 25</td>
<td>104</td>
<td>98</td>
<td>90</td>
<td>83</td>
<td>25</td>
<td>58.3</td>
<td>70.1</td>
<td>54.1</td>
<td>1043</td>
</tr>
<tr>
<td>22 / 30</td>
<td>124</td>
<td>113</td>
<td>102</td>
<td>97</td>
<td>30</td>
<td>58.3</td>
<td>70.1</td>
<td>54.1</td>
<td>1144</td>
</tr>
</tbody>
</table>
Compressor + dryer

<table>
<thead>
<tr>
<th>COMBI</th>
<th>Dimensions</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td>inch</td>
</tr>
<tr>
<td>8</td>
<td>1180 x 770 x 1128</td>
<td>44.1 x 270 x 44.4</td>
</tr>
<tr>
<td>11</td>
<td>1180 x 770 x 1128</td>
<td>44.1 x 270 x 44.4</td>
</tr>
<tr>
<td>15</td>
<td>1180 x 770 x 1128</td>
<td>44.1 x 270 x 44.4</td>
</tr>
<tr>
<td>16</td>
<td>1480 x 780 x 1375</td>
<td>58.3 x 70.1 x 54.1</td>
</tr>
<tr>
<td>18</td>
<td>1480 x 780 x 1375</td>
<td>58.3 x 70.1 x 54.1</td>
</tr>
<tr>
<td>22</td>
<td>1480 x 780 x 1375</td>
<td>58.3 x 70.1 x 54.1</td>
</tr>
</tbody>
</table>

Compressor + receiver (270 litres / 71 gal)

<table>
<thead>
<tr>
<th></th>
<th>without dryer</th>
<th>with dryer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td>inch</td>
</tr>
<tr>
<td>6</td>
<td>1180 x 770 x 1680</td>
<td>44.1 x 270 x 66.1</td>
</tr>
<tr>
<td>8</td>
<td>1180 x 770 x 1680</td>
<td>44.1 x 270 x 66.1</td>
</tr>
<tr>
<td>11</td>
<td>1180 x 770 x 1680</td>
<td>44.1 x 270 x 66.1</td>
</tr>
<tr>
<td>15</td>
<td>1180 x 770 x 1680</td>
<td>44.1 x 270 x 66.1</td>
</tr>
<tr>
<td>16</td>
<td>1900 x 780 x 1950</td>
<td>74.8 x 30.7 x 76.8</td>
</tr>
<tr>
<td>18</td>
<td>1900 x 780 x 1950</td>
<td>74.8 x 30.7 x 76.8</td>
</tr>
<tr>
<td>22</td>
<td>1900 x 780 x 1950</td>
<td>74.8 x 30.7 x 76.8</td>
</tr>
</tbody>
</table>

Compressor + receiver (500 litres / 132 gal)

<table>
<thead>
<tr>
<th></th>
<th>without dryer</th>
<th>with dryer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td>inch</td>
</tr>
<tr>
<td>6</td>
<td>1900 x 770 x 1680</td>
<td>74.8 x 270 x 66.1</td>
</tr>
<tr>
<td>8</td>
<td>1900 x 770 x 1680</td>
<td>74.8 x 270 x 66.1</td>
</tr>
<tr>
<td>11</td>
<td>1900 x 770 x 1680</td>
<td>74.8 x 270 x 66.1</td>
</tr>
<tr>
<td>15</td>
<td>1900 x 770 x 1680</td>
<td>74.8 x 270 x 66.1</td>
</tr>
<tr>
<td>16</td>
<td>1900 x 780 x 1950</td>
<td>74.8 x 30.7 x 76.8</td>
</tr>
<tr>
<td>18</td>
<td>1900 x 780 x 1950</td>
<td>74.8 x 30.7 x 76.8</td>
</tr>
<tr>
<td>22</td>
<td>1900 x 780 x 1950</td>
<td>74.8 x 30.7 x 76.8</td>
</tr>
</tbody>
</table>
The unique design concept of the BELT series makes it cost-effective in every kW class and therefore highly suitable for versatile applications.

With its robust and proven components, the series ensures a high compressor output and reliability around the clock. The tenacious compressors are fitted with a low-maintenance V-belt drive, which transfers the 4 to 200 kW of power with virtually no losses.

The BELT series enables very cost-effective and reliable usage in a volume flow range of up to 5.78 m³/min. The fixed speed concept of the series also delivers long service lives and low maintenance costs, making the screw compressors especially well suited for use as base load compressors in continuous operation.

The range

3 variants with various outputs and volume flows:
- BELT 4 – 37
- BELT 4 – 37 “PLUS”*
- BELT 4 – 37 “O”**

* “PLUS” variant with attached compressed air refrigeration dryer, can also be retrofitted.
** “O” variant with attached compressed air refrigeration dryer and filter system comprising 1x depth filter and 2x active carbon filter for generating technically oil-free compressed air.

Application

Industry

Power output

BELT I: 4 – 37 kW

Volume flow acc. to ISO 1217 (Annex C-1996):

<table>
<thead>
<tr>
<th>Operating pressure</th>
<th>Volume flow</th>
<th>m³/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 bar</td>
<td>0.65 – 5.78</td>
<td></td>
</tr>
<tr>
<td>10 bar</td>
<td>0.54 – 5.15</td>
<td></td>
</tr>
<tr>
<td>13 bar</td>
<td>0.43 – 4.42</td>
<td></td>
</tr>
</tbody>
</table>

Cooling

Air-cooled (standard)
Water-cooled (option as of 11 kW)

Drive

V-belt

Motor

Energy efficiency class IE 3, IP 55 protection, protection class F

** Versatile use thanks to numerous possible extension options
** Proven V-belt drive
** Low maintenance costs due to long service lives
Suitable controllers:

AIR CONTROL B

- Standard

AIR CONTROL P

- Optional

AIR CONTROL HE

- Optional

Controllers starting on p. 42

- Maintenance-friendly design
- Air Control: Smart controller that monitors, visualises and documents
- Efficient cooling air guide
- Base frame: Torsion-resistant, liquid-tight design
- Coolant filter
- Horizontal separating tank: With external fine separator cartridges
50 Hz

<table>
<thead>
<tr>
<th>Model</th>
<th>8 bar m³/min</th>
<th>10 bar m³/min</th>
<th>13 bar m³/min</th>
<th>Rated motor power kW</th>
<th>Length mm</th>
<th>Width mm</th>
<th>Height mm</th>
<th>Weight kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.65</td>
<td>0.54</td>
<td>0.43</td>
<td>4</td>
<td>1020</td>
<td>700</td>
<td>930</td>
<td>200</td>
</tr>
<tr>
<td>5</td>
<td>0.88</td>
<td>0.78</td>
<td>0.65</td>
<td>5.5</td>
<td>1020</td>
<td>700</td>
<td>930</td>
<td>200</td>
</tr>
<tr>
<td>7</td>
<td>1.20</td>
<td>1.07</td>
<td>0.87</td>
<td>7.5</td>
<td>1020</td>
<td>700</td>
<td>930</td>
<td>230</td>
</tr>
<tr>
<td>11</td>
<td>1.70</td>
<td>1.50</td>
<td>1.32</td>
<td>11</td>
<td>1270</td>
<td>890</td>
<td>1190</td>
<td>250</td>
</tr>
<tr>
<td>15</td>
<td>2.24</td>
<td>1.98</td>
<td>1.63</td>
<td>15</td>
<td>1270</td>
<td>890</td>
<td>1190</td>
<td>250</td>
</tr>
<tr>
<td>16</td>
<td>2.52</td>
<td>2.17</td>
<td>1.75</td>
<td>15</td>
<td>1270</td>
<td>890</td>
<td>1190</td>
<td>400</td>
</tr>
<tr>
<td>18</td>
<td>2.97</td>
<td>2.62</td>
<td>2.27</td>
<td>18.5</td>
<td>1270</td>
<td>890</td>
<td>1190</td>
<td>410</td>
</tr>
<tr>
<td>22</td>
<td>3.54</td>
<td>3.12</td>
<td>2.67</td>
<td>22</td>
<td>1270</td>
<td>890</td>
<td>1190</td>
<td>470</td>
</tr>
<tr>
<td>30</td>
<td>4.60</td>
<td>4.12</td>
<td>3.40</td>
<td>30</td>
<td>1270</td>
<td>890</td>
<td>1190</td>
<td>560</td>
</tr>
<tr>
<td>37</td>
<td>5.78</td>
<td>5.15</td>
<td>4.42</td>
<td>37</td>
<td>1270</td>
<td>890</td>
<td>1190</td>
<td>590</td>
</tr>
</tbody>
</table>

BELT 4 – 37

BELT Systems are air-cooled as standard / water-cooled as an option; heat recovery systems available for all models (as of 11 kW); intermediate pressures on request
60 Hz

<table>
<thead>
<tr>
<th>BELT</th>
<th>Volume flow</th>
<th>Rated motor power</th>
<th>Length</th>
<th>Width</th>
<th>Height</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>acc. to ISO 1217 (Annex C-1996)</td>
<td>acfm</td>
<td>acfm</td>
<td>acfm</td>
<td>acfm</td>
<td>HP</td>
</tr>
<tr>
<td>4 / 5</td>
<td>100 psig</td>
<td>25</td>
<td>23</td>
<td>20</td>
<td>-</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>125 psig</td>
<td>32</td>
<td>30</td>
<td>26</td>
<td>24</td>
<td>7.5</td>
</tr>
<tr>
<td>7 / 10</td>
<td>150 psig</td>
<td>43</td>
<td>41</td>
<td>37</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>11 / 15</td>
<td>190 psig</td>
<td>64</td>
<td>60</td>
<td>53</td>
<td>46</td>
<td>15</td>
</tr>
<tr>
<td>15 / 20</td>
<td>200 psig</td>
<td>87</td>
<td>78</td>
<td>72</td>
<td>62</td>
<td>20</td>
</tr>
<tr>
<td>16 / 21</td>
<td>250 psig</td>
<td>97</td>
<td>91</td>
<td>83</td>
<td>62</td>
<td>20</td>
</tr>
<tr>
<td>18 / 25</td>
<td>300 psig</td>
<td>113</td>
<td>101</td>
<td>94</td>
<td>78</td>
<td>25</td>
</tr>
<tr>
<td>22 / 30</td>
<td>350 psig</td>
<td>127</td>
<td>120</td>
<td>112</td>
<td>98</td>
<td>30</td>
</tr>
<tr>
<td>30 / 40</td>
<td>400 psig</td>
<td>174</td>
<td>156</td>
<td>148</td>
<td>122</td>
<td>40</td>
</tr>
<tr>
<td>37 / 50</td>
<td>450 psig</td>
<td>203</td>
<td>182</td>
<td>176</td>
<td>160</td>
<td>50</td>
</tr>
</tbody>
</table>
ALMiG’s DIRECT series is setting standards in the world of compressed air systems with direct drives: the motor’s output is transferred directly to the compressor stage, i.e. without the loss experienced with a V-belt or gear drive.

This type of drive is around 99.9% efficient and is therefore much more efficient than standard drives.

The unique design concept of the DIRECT series makes it incredibly cost-effective in every kW class and therefore highly versatile. It ensures that your company benefits from compressed air generation at minimum operating costs around the clock.

When these compressors with direct drive are combined with the VARIABLE and V-Drive series, they form an unbeatable energy-saving duo.
Separation system
Outstanding compressed air quality from proven multi-stage separation

Cooling unit
Large cooler for minimum compressed air outlet temperatures and optimum coolant temperatures

Drive system
Highly efficient, loss-free direct drive

Compressor
High-performance, excellent efficiency

Air Control
Smart controller that monitors, visualises and documents

Suitable controllers:

AIR CONTROL P
Standard

AIR CONTROL HE
Optional

Controllers starting on p.42
DIRECT

Systems are air-cooled as standard / water-cooled as an option, DIRECT 315 (DIRECT 315/425) only available as water-cooled variant; heat recovery systems available for all models.

<table>
<thead>
<tr>
<th>Model</th>
<th>Operating overpressure</th>
<th>Volume flow acc. to ISO 1217 (Annex C-1998)</th>
<th>Rated motor power kW</th>
<th>Length mm</th>
<th>Width mm</th>
<th>Height mm</th>
<th>Weight kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>7.5</td>
<td>6.80</td>
<td>37</td>
<td>1750</td>
<td>1080</td>
<td>1600</td>
<td>1000</td>
</tr>
<tr>
<td>45</td>
<td>10</td>
<td>6.72</td>
<td>45</td>
<td>1750</td>
<td>1080</td>
<td>1600</td>
<td>1100</td>
</tr>
<tr>
<td>75</td>
<td>11</td>
<td>11.58</td>
<td>75</td>
<td>2300</td>
<td>1400</td>
<td>1860</td>
<td>1970</td>
</tr>
<tr>
<td>90</td>
<td>13</td>
<td>11.47</td>
<td>90</td>
<td>2300</td>
<td>1400</td>
<td>1860</td>
<td>2200</td>
</tr>
<tr>
<td>132</td>
<td>8</td>
<td>23.90</td>
<td>132</td>
<td>2700</td>
<td>1686</td>
<td>1888</td>
<td>3500</td>
</tr>
<tr>
<td>160</td>
<td>11.5</td>
<td>23.37</td>
<td>160</td>
<td>2700</td>
<td>1686</td>
<td>1888</td>
<td>3900</td>
</tr>
<tr>
<td>280</td>
<td>8</td>
<td>48.30</td>
<td>315</td>
<td>3400</td>
<td>1650</td>
<td>2025</td>
<td>4300</td>
</tr>
<tr>
<td>315</td>
<td>10</td>
<td>48</td>
<td>315</td>
<td>3400</td>
<td>1650</td>
<td>2025</td>
<td>4400</td>
</tr>
</tbody>
</table>
60 Hz

<table>
<thead>
<tr>
<th>Model</th>
<th>Operating overpressure</th>
<th>Volume flow acc. to ISO 1217 (Annex C: 1996)</th>
<th>Rated motor power</th>
<th>Length</th>
<th>Width</th>
<th>Height</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>18/25</td>
<td>100 psig</td>
<td>126 acfm</td>
<td>25 HP</td>
<td>60.8 in</td>
<td>35 in</td>
<td>46.9 in</td>
<td>1091 lbs</td>
</tr>
<tr>
<td>22/30</td>
<td>145 psig</td>
<td>125 acfm</td>
<td>30 HP</td>
<td>60.8 in</td>
<td>35 in</td>
<td>46.9 in</td>
<td>1157 lbs</td>
</tr>
<tr>
<td>45/60</td>
<td>110 psig</td>
<td>288 acfm</td>
<td>60 HP</td>
<td>68.9 in</td>
<td>42.5 in</td>
<td>63 in</td>
<td>2359 lbs</td>
</tr>
<tr>
<td>55/75</td>
<td>145 psig</td>
<td>285 acfm</td>
<td>75 HP</td>
<td>68.9 in</td>
<td>42.5 in</td>
<td>63 in</td>
<td>2557 lbs</td>
</tr>
<tr>
<td>75/100</td>
<td>110 psig</td>
<td>499 acfm</td>
<td>100 HP</td>
<td>90.6 in</td>
<td>55.1 in</td>
<td>73.2 in</td>
<td>4299 lbs</td>
</tr>
<tr>
<td>90/125</td>
<td>145 psig</td>
<td>493 acfm</td>
<td>125 HP</td>
<td>90.6 in</td>
<td>55.1 in</td>
<td>73.2 in</td>
<td>4519 lbs</td>
</tr>
<tr>
<td>160/215</td>
<td>125 psig</td>
<td>1009 acfm</td>
<td>215 HP</td>
<td>90.6 in</td>
<td>55.1 in</td>
<td>79.7 in</td>
<td>7606 lbs</td>
</tr>
<tr>
<td>315/425</td>
<td>110 psig</td>
<td>2049 acfm</td>
<td>425 HP</td>
<td>134 in</td>
<td>65 in</td>
<td>79.7 in</td>
<td>9700 lbs</td>
</tr>
</tbody>
</table>
GEAR

High delivery volume that packs a punch

The screw compressors of the GEAR series are particularly suitable for very high compressed air requirements. The product range offers delivery volumes of 3.58 to 71.15 m³/min at max. operating pressures of 8, 10 and 13 bar.

The maintenance- and service-friendly drive concept of the GEAR compressors includes a robust drive motor with high power reserves.

The highly efficient gearbox delivers minimum slip, high reliability, is virtually free of losses with an efficiency of >98% and is gentle on the drive. What’s more, highly efficient separation of the cooling medium enables a minimum residual oil content of just 2 – 3 mg/m³.

Due to the enclosed design of the gear set, these systems are suitable for use under the toughest operating conditions.

Application:
Industry

Power output
GEAR I: 30 – 75 kW
GEAR II: 90 – 200 kW
GEAR II: 200 – 500 kW

Volume flow acc. to ISO 1217 (Annex C-1996):
8 bar: 5.01 – 71.15 m³/min
10 bar: 4.32 – 64 m³/min
13 bar: 3.58 – 33.31 m³/min

Operating pressure
5 – 13 bar

Cooling
Air (standard);
water (option);
GEAR 315 – 500 only water-cooled

Drive
Gearbox
Motor
Energy efficiency class IE 3, IP 55 protection, protection class F

+ Ideal for very high compressed air requirements
+ Robust drive unit with high power reserves
+ Virtually free of losses with an efficiency of >98%
+ Maintenance- and service-friendly drive concept
Suitable controllers:

AIR CONTROL B
Standard (30 – 75 kW)

AIR CONTROL P
Optional (30 – 75 kW)
Standard (90 – 450 kW)

AIR CONTROL HE
Optional

Cooling unit
Large cooler for minimum compressed air outlet temperatures

Drive system
Driven by perfectly matched gearbox

Fan
Optimum cooling, high residual thrust

Separation system
Outstanding compressed air quality from proven multi-stage separation

Compressor stage
State-of-the-art stage technology, with integrated gear set

Air Control
Smart controller that monitors, visualises and documents
GEAR 50 Hz

<table>
<thead>
<tr>
<th>GEAR</th>
<th>Volume flow acc. to ISO 1217 (Annex C-1996)</th>
<th>Rated motor power</th>
<th>Length</th>
<th>Width</th>
<th>Height</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8 bar</td>
<td>10 bar</td>
<td>13 bar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>m³/min</td>
<td>m³/min</td>
<td>m³/min</td>
<td>kW</td>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>30</td>
<td>5.01</td>
<td>4.32</td>
<td>3.58</td>
<td>30</td>
<td>1850</td>
<td>1080</td>
</tr>
<tr>
<td>37</td>
<td>5.81</td>
<td>5.19</td>
<td>4.25</td>
<td>37</td>
<td>1850</td>
<td>1080</td>
</tr>
<tr>
<td>45</td>
<td>6.96</td>
<td>6.38</td>
<td>5.35</td>
<td>45</td>
<td>1850</td>
<td>1080</td>
</tr>
<tr>
<td>55</td>
<td>9.37</td>
<td>8.16</td>
<td>6.67</td>
<td>55</td>
<td>1950</td>
<td>1080</td>
</tr>
<tr>
<td>75</td>
<td>11.69</td>
<td>10.35</td>
<td>8.94</td>
<td>75</td>
<td>1950</td>
<td>1080</td>
</tr>
<tr>
<td>90</td>
<td>15.30</td>
<td>13.25</td>
<td>10.34</td>
<td>90</td>
<td>2600</td>
<td>1400</td>
</tr>
<tr>
<td>110</td>
<td>19.10</td>
<td>16.46</td>
<td>13.10</td>
<td>110</td>
<td>2600</td>
<td>1400</td>
</tr>
<tr>
<td>132</td>
<td>22.99</td>
<td>19.94</td>
<td>16.58</td>
<td>132</td>
<td>2800</td>
<td>1400</td>
</tr>
<tr>
<td>160</td>
<td>27.38</td>
<td>24.49</td>
<td>19.89</td>
<td>160</td>
<td>2800</td>
<td>1400</td>
</tr>
<tr>
<td>200</td>
<td>29.65</td>
<td>29.46</td>
<td>24</td>
<td>200</td>
<td>2800</td>
<td>1400</td>
</tr>
</tbody>
</table>

Systems are air-cooled as standard / water-cooled as an option, GEAR 315–500 only water-cooled; GEAR 315–500: 13 bar on request; heat recovery systems available for all models.
<table>
<thead>
<tr>
<th>Model</th>
<th>Volume flow 8 bar m³/min</th>
<th>Volume flow 10 bar m³/min</th>
<th>Volume flow 13 bar m³/min</th>
<th>Rated motor power kW</th>
<th>Length mm</th>
<th>Width mm</th>
<th>Height mm</th>
<th>Weight kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>201</td>
<td>36.41</td>
<td>32.44</td>
<td>25.60</td>
<td>200</td>
<td>3400</td>
<td>1650</td>
<td>2025</td>
<td>4200</td>
</tr>
<tr>
<td>250</td>
<td>44.15</td>
<td>39.24</td>
<td>33.31</td>
<td>250</td>
<td>3400</td>
<td>1650</td>
<td>2025</td>
<td>4300</td>
</tr>
<tr>
<td>315</td>
<td>53.21</td>
<td>45.71</td>
<td>on request</td>
<td>315</td>
<td>3400</td>
<td>1650</td>
<td>2025</td>
<td>5700</td>
</tr>
<tr>
<td>355</td>
<td>61.66</td>
<td>52.74</td>
<td>on request</td>
<td>355</td>
<td>3600</td>
<td>2100</td>
<td>2200</td>
<td>5750</td>
</tr>
<tr>
<td>400</td>
<td>65.94</td>
<td>58.41</td>
<td>on request</td>
<td>400</td>
<td>3600</td>
<td>2100</td>
<td>2200</td>
<td>5900</td>
</tr>
<tr>
<td>450</td>
<td>-</td>
<td>64.10</td>
<td>on request</td>
<td>450</td>
<td>3600</td>
<td>2100</td>
<td>2200</td>
<td>6200</td>
</tr>
<tr>
<td>500</td>
<td>71.15</td>
<td>64</td>
<td>on request</td>
<td>500</td>
<td>3600</td>
<td>2100</td>
<td>2200</td>
<td>6800</td>
</tr>
</tbody>
</table>
The speed-controlled, directly driven compressors of the FLEX series are used wherever compressed air is to be generated by a small, compact and extremely quiet system. With the vertical alignment of the motor-compressor unit in the FLEX series, ALMiG has developed one of the most compact screw compressor systems on the market. The sound level of these small screw compressors is only around 60 dB(A). If required, they can be used directly at the workstation.

The FLEX series also provides you with a significant cost reduction: market analyses show that on average compressors only have a utilisation rate of around 50 – 70%. The maximum delivery volume is, however, only needed during peak times. The integrated ALMiG SCD technology, the benefits of which come to the fore in partial load applications, allows you to achieve an energy saving of up to 35%. The holistic SCD technology drive concept stands for Speed Controlled and Direct drive.

The speed-controlled version of the direct drive offers additional benefits. For example, a speed-controlled FLEX can instantly make an entire compressed air station more cost-effective in the smart ALMiG “master-slave network”.

Achieve energy saving of up to 35% through:
- Speed control
- Constant mains pressure, stepless from 5 to 13 bar
- Extremely good system efficiency
- No start-up changeover power peaks
- No expensive idle times

Application
- **Industry**

Power output
- FLEX II: 5.5 – 15 kW
- FLEX III: 15 – 30 kW

Volume flow acc. to ISO 1217
- (Annex C 1996)
- 0.53 – 3.47 m³/min

Operating pressure
- 5 – 13 bar

Cooling
- Air-cooled

Drive
- Direct and speed-controlled

Motor
- Energy efficiency class IE 3, IP 55 protection, protection class F
SCD frequency converter
The integrated power pack; meets EMC guidelines

Air Control
Smart controller that monitors, visualises and documents

Maintenance-friendly design
Accessible from one side

Unit cooler
Efficient cooler for minimum coolant/compressed air outlet temperatures

Motor-compressor unit
Highly efficient, vertically aligned drive system

Suitable controllers:

AIR CONTROL B
Standard

AIR CONTROL P
Optional

AIR CONTROL HE
Optional

Controllers starting on p. 42
FLEX

Standard variant

Receiver variant

FLEX ‘PLUS’ Variant with sub-mounted refrigeration dryer

50 Hz

<table>
<thead>
<tr>
<th>FLEX</th>
<th>Operating overpressure</th>
<th>Volume flow acc. to ISO 1217 (Annex C-1998)*</th>
<th>Rated motor power</th>
<th>Length</th>
<th>Width</th>
<th>Height</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bar</td>
<td>min.</td>
<td>max.</td>
<td>kW</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>6</td>
<td>5 – 13</td>
<td>0.53</td>
<td>0.85</td>
<td>5.5</td>
<td>870</td>
<td>590</td>
<td>990</td>
</tr>
<tr>
<td>7</td>
<td>5 – 13</td>
<td>0.53</td>
<td>1.19</td>
<td>7.5</td>
<td>870</td>
<td>590</td>
<td>990</td>
</tr>
<tr>
<td>11</td>
<td>5 – 13</td>
<td>0.53</td>
<td>1.70</td>
<td>11</td>
<td>870</td>
<td>590</td>
<td>990</td>
</tr>
<tr>
<td>15</td>
<td>5 – 13</td>
<td>0.53</td>
<td>2.10</td>
<td>15</td>
<td>870</td>
<td>590</td>
<td>990</td>
</tr>
<tr>
<td>16</td>
<td>5 – 13</td>
<td>1.39</td>
<td>2.79</td>
<td>15</td>
<td>1140</td>
<td>890</td>
<td>1315</td>
</tr>
<tr>
<td>18</td>
<td>5 – 13</td>
<td>1.06</td>
<td>3.16</td>
<td>18.5</td>
<td>1140</td>
<td>890</td>
<td>1315</td>
</tr>
<tr>
<td>22</td>
<td>5 – 13</td>
<td>1.06</td>
<td>3.47</td>
<td>22</td>
<td>1140</td>
<td>890</td>
<td>1315</td>
</tr>
</tbody>
</table>

* V relates to an operating overpressure of 7 bar at 50 Hz / 100 psig at 60 Hz; heat recovery systems available
** as “O” variant with sub-mounted refrigeration dryer and filter system for generating “oil-free” compressed air
60 Hz

<table>
<thead>
<tr>
<th>FLEX</th>
<th>Operating overpressure</th>
<th>Volume flow acc. to ISO 1217/Annex C-1996*</th>
<th>Rated motor power</th>
<th>Length</th>
<th>Width</th>
<th>Height</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>psig</td>
<td>acfm</td>
<td>acfm</td>
<td>HP</td>
<td>inch</td>
<td>inch</td>
<td>inch</td>
</tr>
<tr>
<td>6/7</td>
<td>75-190</td>
<td>17</td>
<td>30</td>
<td>7.5</td>
<td>34.3</td>
<td>23.2</td>
<td>39</td>
</tr>
<tr>
<td>7/10</td>
<td>75-190</td>
<td>22</td>
<td>42</td>
<td>10</td>
<td>34.3</td>
<td>23.2</td>
<td>39</td>
</tr>
<tr>
<td>11/15</td>
<td>75-190</td>
<td>17</td>
<td>61</td>
<td>15</td>
<td>34.3</td>
<td>23.2</td>
<td>39</td>
</tr>
<tr>
<td>15/20</td>
<td>75-190</td>
<td>26</td>
<td>76</td>
<td>20</td>
<td>34.3</td>
<td>23.2</td>
<td>39</td>
</tr>
<tr>
<td>16/21</td>
<td>75-190</td>
<td>49</td>
<td>100</td>
<td>20</td>
<td>44.9</td>
<td>35</td>
<td>51.8</td>
</tr>
<tr>
<td>18/25</td>
<td>75-190</td>
<td>37</td>
<td>113</td>
<td>25</td>
<td>44.9</td>
<td>35</td>
<td>51.8</td>
</tr>
<tr>
<td>22/30</td>
<td>75-190</td>
<td>37</td>
<td>126</td>
<td>30</td>
<td>44.9</td>
<td>35</td>
<td>51.8</td>
</tr>
<tr>
<td>30/40</td>
<td>75-190</td>
<td>37</td>
<td>143</td>
<td>40</td>
<td>44.9</td>
<td>35</td>
<td>51.8</td>
</tr>
</tbody>
</table>
The speed-controlled screw compressors of the VARIABLE series are the result of decades of experience in the field of energy-efficient solutions. They are designed for use under the toughest operating conditions and for applications with variable compressed air requirements. The system is therefore the right solution for high operational readiness and efficient compressed air supply.

Market analyses show that on average compressors only have a utilisation rate of around 50 – 70%. The maximum delivery volume is, however, only needed during peak times. The integrated ALMiG SCD technology, the benefits of which come to the fore in partial load applications, allows you to achieve an energy saving of up to 35%. The holistic SCD technology drive concept stands for Speed Controlled and Direct drive.

The directly driven, speed-controlled VARIABLE is unbeatable when coupled with the DIRECT series, which is also directly driven, as an “energy-saving duo”.

Achieve an energy saving of up to 35% through:
- Speed control
- Constant mains pressure, stepless from 5 to 13 bar
- Extremely good system efficiency
- No start-up changeover power peaks
- No expensive idle times

+ Efficient ALMiG SCD technology
+ Designed for use under the toughest operating conditions
+ Unbeatable energy efficiency in combination with the DIRECT series
+ Versatile use thanks to numerous possible extension options
Maintenance-friendly design

Air Control
Smart controller that monitors, visualises and documents

Base frame
Torsion-resistant, liquid-tight design

Horizontal separating tank
With external fine separator cartridges

Control cabinet
Large with integrated frequency converter

Suitable controllers:

AIR CONTROL B

- Standard (16 – 34 kW)

AIR CONTROL P

- Optional (16 – 34 kW)
- Standard (35 – 355 kW)

AIR CONTROL HE

- Optional

Controllers starting on p. 42
VARIABLE

50 Hz

<table>
<thead>
<tr>
<th>Model</th>
<th>Operating overpressure</th>
<th>Volume flow acc. to ISO 1217 (Annex C-1996)*</th>
<th>Rated motor power</th>
<th>Length</th>
<th>Width</th>
<th>Height</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>min.</td>
<td>max.</td>
<td>kW</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>kg</td>
</tr>
<tr>
<td>16</td>
<td>5 – 13</td>
<td>1.17</td>
<td>2.68</td>
<td>16</td>
<td>1270</td>
<td>890</td>
<td>1190</td>
</tr>
<tr>
<td>20</td>
<td>5 – 13</td>
<td>1.17</td>
<td>3.22</td>
<td>20</td>
<td>1270</td>
<td>890</td>
<td>1190</td>
</tr>
<tr>
<td>24</td>
<td>5 – 13</td>
<td>1.17</td>
<td>3.62</td>
<td>24</td>
<td>1545</td>
<td>890</td>
<td>1190</td>
</tr>
<tr>
<td>28</td>
<td>5 – 13</td>
<td>1.17</td>
<td>4.14</td>
<td>28</td>
<td>1545</td>
<td>890</td>
<td>1190</td>
</tr>
<tr>
<td>32</td>
<td>5 – 13</td>
<td>1.96</td>
<td>4.93</td>
<td>32</td>
<td>1545</td>
<td>890</td>
<td>1190</td>
</tr>
<tr>
<td>34</td>
<td>5 – 13</td>
<td>1.96</td>
<td>5.65</td>
<td>38</td>
<td>1545</td>
<td>890</td>
<td>1190</td>
</tr>
<tr>
<td>35</td>
<td>5 – 13</td>
<td>1.07</td>
<td>6.02</td>
<td>40</td>
<td>2090</td>
<td>1080</td>
<td>1600</td>
</tr>
<tr>
<td>37</td>
<td>5 – 13</td>
<td>1.07</td>
<td>6.52</td>
<td>50</td>
<td>2090</td>
<td>1080</td>
<td>1600</td>
</tr>
<tr>
<td>55</td>
<td>5 – 13</td>
<td>2.22</td>
<td>9.98</td>
<td>60</td>
<td>2090</td>
<td>1080</td>
<td>1600</td>
</tr>
<tr>
<td>65</td>
<td>5 – 13</td>
<td>2.23</td>
<td>10.73</td>
<td>80</td>
<td>2090</td>
<td>1080</td>
<td>1600</td>
</tr>
<tr>
<td>70</td>
<td>5 – 13</td>
<td>2.81</td>
<td>12.84</td>
<td>85</td>
<td>2090</td>
<td>1080</td>
<td>1600</td>
</tr>
<tr>
<td>90</td>
<td>5 – 13</td>
<td>4.30</td>
<td>16.85</td>
<td>100</td>
<td>2300</td>
<td>1400</td>
<td>1860</td>
</tr>
<tr>
<td>115</td>
<td>5 – 13</td>
<td>4.30</td>
<td>18.28</td>
<td>115</td>
<td>2300</td>
<td>1400</td>
<td>1860</td>
</tr>
<tr>
<td>130</td>
<td>5 – 13</td>
<td>4.30</td>
<td>20.00</td>
<td>130</td>
<td>2300</td>
<td>1400</td>
<td>1860</td>
</tr>
<tr>
<td>150</td>
<td>5 – 13</td>
<td>9.40</td>
<td>27.25</td>
<td>150</td>
<td>2700</td>
<td>1686</td>
<td>1888</td>
</tr>
<tr>
<td>210</td>
<td>5 – 13</td>
<td>9.40</td>
<td>30.14</td>
<td>210</td>
<td>2700</td>
<td>1686</td>
<td>1888</td>
</tr>
<tr>
<td>260</td>
<td>5 – 13</td>
<td>15.70</td>
<td>41.80</td>
<td>260</td>
<td>3950</td>
<td>1650</td>
<td>2025</td>
</tr>
<tr>
<td>315</td>
<td>5 – 13</td>
<td>15.70</td>
<td>53.00</td>
<td>315</td>
<td>3950</td>
<td>1650</td>
<td>2025</td>
</tr>
<tr>
<td>355</td>
<td>5 – 10</td>
<td>15.70</td>
<td>55.55</td>
<td>355</td>
<td>3950</td>
<td>1650</td>
<td>2025</td>
</tr>
</tbody>
</table>

* V relates to an operating overpressure of 7 bar at 50 Hz / 100 psig at 60 Hz; systems are air-cooled as standard / water-cooled as an option as of VARIABLE 35 model (VARIABLE 35 / 51), as of VARIABLE 315 model (VARIABLE 315 / 430) only water-cooled systems available; heat recovery systems available for all models; variants 16 – 30 are also available as “O” or “Plus” versions.
<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>Operating overpressure</th>
<th>Volume flow acc. to ISO 1217 (Annex C 1996)*</th>
<th>Rated motor power</th>
<th>Length</th>
<th>Width</th>
<th>Height</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>psig</td>
<td>acfm</td>
<td>acfm</td>
<td>HP</td>
<td>inch</td>
<td>inch</td>
<td>inch</td>
</tr>
<tr>
<td>16/20</td>
<td>75 – 190</td>
<td>41</td>
<td>95</td>
<td>20</td>
<td>50</td>
<td>35</td>
<td>46.9</td>
</tr>
<tr>
<td>20/25</td>
<td>75 – 190</td>
<td>41</td>
<td>115</td>
<td>25</td>
<td>50</td>
<td>35</td>
<td>46.9</td>
</tr>
<tr>
<td>24/30</td>
<td>75 – 190</td>
<td>41</td>
<td>130</td>
<td>30</td>
<td>60.8</td>
<td>35</td>
<td>46.1</td>
</tr>
<tr>
<td>28/40</td>
<td>75 – 190</td>
<td>41</td>
<td>148</td>
<td>40</td>
<td>60.8</td>
<td>35</td>
<td>46.1</td>
</tr>
<tr>
<td>32/45</td>
<td>75 – 190</td>
<td>69</td>
<td>176</td>
<td>45</td>
<td>60.8</td>
<td>35</td>
<td>46.9</td>
</tr>
<tr>
<td>34/50</td>
<td>75 – 190</td>
<td>69</td>
<td>203</td>
<td>50</td>
<td>60.8</td>
<td>35</td>
<td>46.9</td>
</tr>
<tr>
<td>35/51</td>
<td>75 – 190</td>
<td>38</td>
<td>216</td>
<td>50</td>
<td>82.3</td>
<td>42.6</td>
<td>63</td>
</tr>
<tr>
<td>37/55</td>
<td>75 – 190</td>
<td>38</td>
<td>234</td>
<td>55</td>
<td>82.3</td>
<td>42.6</td>
<td>63</td>
</tr>
<tr>
<td>55/80</td>
<td>75 – 190</td>
<td>78</td>
<td>356</td>
<td>80</td>
<td>82.3</td>
<td>42.6</td>
<td>63</td>
</tr>
<tr>
<td>65/90</td>
<td>75 – 190</td>
<td>79</td>
<td>385</td>
<td>90</td>
<td>82.3</td>
<td>42.6</td>
<td>63</td>
</tr>
<tr>
<td>70/95</td>
<td>75 – 190</td>
<td>99</td>
<td>461</td>
<td>95</td>
<td>82.3</td>
<td>42.6</td>
<td>63</td>
</tr>
<tr>
<td>90/125</td>
<td>75 – 190</td>
<td>152</td>
<td>602</td>
<td>125</td>
<td>90.6</td>
<td>55.1</td>
<td>73.2</td>
</tr>
<tr>
<td>115/155</td>
<td>75 – 190</td>
<td>152</td>
<td>652</td>
<td>155</td>
<td>90.6</td>
<td>55.1</td>
<td>73.2</td>
</tr>
<tr>
<td>130/175</td>
<td>75 – 190</td>
<td>152</td>
<td>713</td>
<td>175</td>
<td>90.6</td>
<td>55.1</td>
<td>73.2</td>
</tr>
<tr>
<td>150/200</td>
<td>75 – 190</td>
<td>332</td>
<td>976</td>
<td>200</td>
<td>106.3</td>
<td>66.4</td>
<td>74.3</td>
</tr>
<tr>
<td>210/280</td>
<td>75 – 190</td>
<td>332</td>
<td>1078</td>
<td>280</td>
<td>106.3</td>
<td>66.4</td>
<td>74.3</td>
</tr>
<tr>
<td>260/350</td>
<td>75 – 190</td>
<td>554</td>
<td>1476</td>
<td>350</td>
<td>155.5</td>
<td>65</td>
<td>79.7</td>
</tr>
<tr>
<td>315/430</td>
<td>75 – 190</td>
<td>554</td>
<td>1901</td>
<td>430</td>
<td>155.5</td>
<td>65</td>
<td>79.7</td>
</tr>
<tr>
<td>355/480</td>
<td>75 – 145</td>
<td>554</td>
<td>1990</td>
<td>480</td>
<td>155.5</td>
<td>65</td>
<td>79.7</td>
</tr>
</tbody>
</table>
Oil-free compressed air of outstanding quality

Our LENTO series generates 100% oil-free compressed air for all applications, where products of the highest quality are produced. Given that only water, the most natural of all raw materials, is used in the compression process, LENTO delivers maximum compressed air quality for highly sensitive areas e.g. the pharmaceutical, foodstuffs, electrical engineering and medical industries.

The speed-controlled direct drive of the LENTO series delivers maximum cost-effectiveness by precisely matching the volume flow to the respective compressed air requirement. The integrated refrigeration dryer ensures a low pressure dew point. Therefore, under certain circumstances, the customer doesn’t need a separate refrigeration dryer. This avoids costs for the fresh water supply and water processing and minimises service and maintenance costs compared with other oil-free compression systems.

Clean and ecological solution:
- Clean, environmentally friendly oil-free compressed air
- ISO class 0, certified in accordance with DIN ISO 8573-1:2010
- Dust particles that are drawn in are washed out by the water
- Clean condensate – pure water – can be discharged directly into the sewer system
- Very low temperatures during compression thanks to excellent heat transfer via the water. Reduced amounts of energy are therefore used to generate the compressed air

Application:
100% oil-free compressed air for industrial use (pharmaceutical, food, chemical, etc.)

Power output
LENTO I: 15 – 30 kW
LENTO II: 30 – 55 kW
LENTO III: 45 – 80 kW
LENTO IV: 80 – 130 kW

Volume flow acc. to ISO 1217 (Annex C-1996)
1.01 – 18.03 m³/min

Operating pressure
LENTO I & II: 5 – 10 bar
LENTO III & IV: 5 – 13 bar

Cooling
Water-cooled: (standard)
Air-cooled: (option)
Only water-cooled available as of LENTO 80

Drive
Direct and speed-controlled

Motor
Energy efficiency class IE 3;
IP 55 protection, protection class F

+ 100% oil-free compressed air generation
+ Volume flow can be adapted exactly to meet compressed air requirements
+ No switching cycles or expensive idle times
+ Energy-saving soft start without current peaks
+ Operating pressure can be freely selected between \(p_{\text{min}} \) – \(p_{\text{max}} \) in 0.1 bar/1.5 psig increments
+ The reduction in pressure can save money
Compressor
- Single-stage, water-injected; very low compression temperatures of <60°C, close to isothermic, economical compression

SCD direct drive
- Zero-loss power transfer

SCD motor
- Highly efficient drive motor; IP 55 protection class ISO F; compact, powerful, reliable

Air Control
- Smart controller that monitors, visualises and documents

Integrated refrigeration dryer
- Permanent generation and exchange of the required coolant, optimum biological and chemical water quality, for dry compressed air at the compressed air outlet

Stainless steel piping

SCD frequency converter
- The integrated power pack, according to EMC guidelines

Sustainable controllers:

AIR CONTROL P
- **Standard**

AIR CONTROL HE
- **Optional**

Controllers starting on p. 42
LENTO

50 Hz speed-controlled

<table>
<thead>
<tr>
<th>LENTO</th>
<th>Operating overpressure</th>
<th>Volume flow acc. to ISO 1217 (Annex C-1996)*</th>
<th>Rated motor power</th>
<th>Length</th>
<th>Width</th>
<th>Height</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bar</td>
<td>min.</td>
<td>max.</td>
<td>kW</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>15</td>
<td>5 – 10</td>
<td>1.01</td>
<td>2.34</td>
<td>15</td>
<td>1880</td>
<td>850</td>
<td>1660</td>
</tr>
<tr>
<td>18</td>
<td>5 – 10</td>
<td>1.01</td>
<td>2.87</td>
<td>18.5</td>
<td>1880</td>
<td>850</td>
<td>1660</td>
</tr>
<tr>
<td>22</td>
<td>5 – 10</td>
<td>1.01</td>
<td>3.38</td>
<td>22</td>
<td>1880</td>
<td>850</td>
<td>1660</td>
</tr>
<tr>
<td>30</td>
<td>5 – 10</td>
<td>1.01</td>
<td>4.30</td>
<td>30</td>
<td>1880</td>
<td>850</td>
<td>1660</td>
</tr>
<tr>
<td>31</td>
<td>5 – 10</td>
<td>2.04</td>
<td>5.08</td>
<td>30</td>
<td>2300</td>
<td>1400</td>
<td>1560</td>
</tr>
<tr>
<td>37</td>
<td>5 – 10</td>
<td>2.04</td>
<td>6.14</td>
<td>37</td>
<td>2300</td>
<td>1400</td>
<td>1560</td>
</tr>
<tr>
<td>45</td>
<td>5 – 10</td>
<td>2.04</td>
<td>7.13</td>
<td>45</td>
<td>2300</td>
<td>1400</td>
<td>1560</td>
</tr>
<tr>
<td>55</td>
<td>5 – 10</td>
<td>2.04</td>
<td>8.19</td>
<td>55</td>
<td>2300</td>
<td>1400</td>
<td>1560</td>
</tr>
<tr>
<td>46</td>
<td>5 – 13</td>
<td>2.51</td>
<td>8.58</td>
<td>45</td>
<td>2300</td>
<td>1400</td>
<td>1560</td>
</tr>
<tr>
<td>56</td>
<td>5 – 13</td>
<td>2.51</td>
<td>9.97</td>
<td>55</td>
<td>2300</td>
<td>1400</td>
<td>1560</td>
</tr>
<tr>
<td>70</td>
<td>5 – 13</td>
<td>2.51</td>
<td>11.56</td>
<td>70</td>
<td>2300</td>
<td>1400</td>
<td>1560</td>
</tr>
<tr>
<td>80</td>
<td>5 – 13</td>
<td>2.51</td>
<td>12.28</td>
<td>80</td>
<td>2300</td>
<td>1400</td>
<td>1560</td>
</tr>
<tr>
<td>81</td>
<td>5 – 13</td>
<td>4.57</td>
<td>15.50</td>
<td>80</td>
<td>2800</td>
<td>1400</td>
<td>1910</td>
</tr>
<tr>
<td>90</td>
<td>5 – 13</td>
<td>4.57</td>
<td>17.23</td>
<td>90</td>
<td>2800</td>
<td>1400</td>
<td>1910</td>
</tr>
<tr>
<td>110</td>
<td>5 – 13</td>
<td>4.57</td>
<td>18.03</td>
<td>130</td>
<td>2800</td>
<td>1400</td>
<td>1910</td>
</tr>
</tbody>
</table>

* V relates to an operating overpressure of 7 bar at 50 Hz / 100 psig at 60 Hz; LENTO 15 – 70 (15 / 20 – 70 / 95) water-cooled as standard, air-cooled as an option; LENTO 75 D (75 / 100 D) and LENTO 80 – 110 (LENTO 80 / 105 – 110 / 150) only available as water-cooled.
60 Hz speed-controlled

<table>
<thead>
<tr>
<th>LENTO</th>
<th>Operating overpressure</th>
<th>Volume flow acc. to ISO 1217 (Annex C-1996)*</th>
<th>Rated motor power</th>
<th>Length</th>
<th>Width</th>
<th>Height</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>psig</td>
<td>acfm</td>
<td>acfm</td>
<td>HP</td>
<td>inch</td>
<td>inch</td>
<td>inch</td>
</tr>
<tr>
<td>15/20</td>
<td>75–145</td>
<td>36</td>
<td>83</td>
<td>20</td>
<td>74</td>
<td>33.5</td>
<td>65.4</td>
</tr>
<tr>
<td>18/25</td>
<td>75–145</td>
<td>36</td>
<td>103</td>
<td>25</td>
<td>74</td>
<td>33.5</td>
<td>65.4</td>
</tr>
<tr>
<td>22/30</td>
<td>75–145</td>
<td>36</td>
<td>121</td>
<td>30</td>
<td>74</td>
<td>33.5</td>
<td>65.4</td>
</tr>
<tr>
<td>30/40</td>
<td>75–145</td>
<td>36</td>
<td>153</td>
<td>40</td>
<td>74</td>
<td>33.5</td>
<td>65.4</td>
</tr>
<tr>
<td>31/41</td>
<td>75–145</td>
<td>72</td>
<td>182</td>
<td>40</td>
<td>90.6</td>
<td>55.1</td>
<td>61.4</td>
</tr>
<tr>
<td>37/50</td>
<td>75–145</td>
<td>72</td>
<td>220</td>
<td>50</td>
<td>90.6</td>
<td>55.1</td>
<td>61.4</td>
</tr>
<tr>
<td>45/60</td>
<td>75–145</td>
<td>72</td>
<td>255</td>
<td>60</td>
<td>90.6</td>
<td>55.1</td>
<td>61.4</td>
</tr>
<tr>
<td>55/75</td>
<td>75–145</td>
<td>72</td>
<td>292</td>
<td>75</td>
<td>90.6</td>
<td>55.1</td>
<td>61.4</td>
</tr>
<tr>
<td>46/61</td>
<td>75–190</td>
<td>89</td>
<td>306</td>
<td>60</td>
<td>90.6</td>
<td>55.1</td>
<td>61.4</td>
</tr>
<tr>
<td>56/76</td>
<td>75–190</td>
<td>89</td>
<td>355</td>
<td>75</td>
<td>90.6</td>
<td>55.1</td>
<td>61.4</td>
</tr>
<tr>
<td>70/95</td>
<td>75–190</td>
<td>89</td>
<td>412</td>
<td>95</td>
<td>90.6</td>
<td>55.1</td>
<td>61.4</td>
</tr>
<tr>
<td>80/105</td>
<td>75–190</td>
<td>89</td>
<td>440</td>
<td>105</td>
<td>90.6</td>
<td>55.1</td>
<td>61.4</td>
</tr>
<tr>
<td>81/106</td>
<td>75–190</td>
<td>161</td>
<td>554</td>
<td>105</td>
<td>110.2</td>
<td>55.1</td>
<td>75.2</td>
</tr>
<tr>
<td>90/125</td>
<td>75–190</td>
<td>161</td>
<td>615</td>
<td>125</td>
<td>110.2</td>
<td>55.1</td>
<td>75.2</td>
</tr>
<tr>
<td>110/150</td>
<td>75–190</td>
<td>161</td>
<td>637</td>
<td>175</td>
<td>110.2</td>
<td>55.1</td>
<td>75.2</td>
</tr>
</tbody>
</table>
CONTROLLERS

Smart monitoring, reliable documentation
In the future it will be even easier to remotely monitor your compressed air generation thanks to visualisation via the ALMiG web server – regardless of where you happen to be at the time. The system ensures high reliability with convenient access to various parameters, prompt messages and comprehensive facts.

Up to ten compressors can be monitored in this way – regardless of the compressor type. The system works with both piston and screw or turbo compressors. The only prerequisite is that the web server is connected via an AIR CONTROL HE. State-of-the-art bus technology is used for the installation.

Accessible parameters:

- Energy and compressed air balance, also available to download
- Overview of the compressor station with the operating statuses of each individual compressor
- Loaded / idle mode statistics of compressors
- Data on delivery volumes, volume flows and motor starts
- Detailed information about utilisation, network pressure and specific performance data
- Data on energy efficiency and maintenance

The most important benefits:

- Easy to operate via standard internet browser
- Can be accessed via company’s own network or anywhere in the world via the Internet
- Dial-in protected by user ID
- Various parameters are depicted either in tables or graphs
- Continuous monitoring of all parameters of relevance to operation
- Active e-mail notification to up to 5 e-mail addresses in the event of warnings, maintenance work or faults
- Convenient transfer of all relevant data into Office programs such as MS Excel
- The parameters are displayed in a visually appealing way
- CSV files for further processing
Connection of systems & components does not depend on the manufacturer
Module DE 200K/F
Using the ALMiG AIR CONTROL family of controllers you can control, manage and monitor your entire compressed air supply system in the best possible way.

The smart, integrated compressor controllers offer you optimum operating convenience and outstanding cost-effectiveness. They deliver maximum reliability in the supply of compressed air and plan maintenance ahead of time.

The very latest microprocessor and communications technology is used, guaranteeing you seamless integration of all compressor models as well as the entire range of accessories. And all that as standard via the RS-485 data bus. The optional connectivity to a web server enables monitoring of your compressor station from anywhere in the world.

Further functionality and benefits:

- Huge potential savings by reducing idling levels and lowering pressure levels
- Transparency when it comes to the compressors and accessories, at all times
- Reductions in maintenance time and downtimes

AIR CONTROL MINI

- Icon display for the most important operating states, such as compression temperature, dew point and operating pressure
- Programmable automatic restart
- On-site operation – Remote on/off
- Fault memory (no. of positions)
- Refrigeration dryer activation

AIR CONTROL B

- Microprocessor controller
- Illuminated colour LCD display
- Navigation using number keys
- Icon display for all the important operating states, such as mains pressure, final oil and compression temperature
- Maintenance interval indicator
- Fault memory
- Link to superordinate control systems
- Refrigeration dryer activation
AIR CONTROL P

- Microprocessor controller with colour touch screen and illuminated graphic display menu
- Supported user guidance
- Simple connection to all accessory components
- Can be integrated into the customer’s own management systems
- Timer programming for optimum adaptation to operational requirements
- “System pass” – the compressor’s identity card
- Various language variants available
- Various graphical depictions can be accessed, e.g. volume flow produced as daily and weekly profile
- Basic load cycle switching: another 4 additional compressors (slaves) can be added as master control device
- Fault memory
- Programmable automatic restart
- Extensive statistics with data logging
- System parameters can be saved to a data medium to reduce programming effort

AIR CONTROL HE

Version: Compressor and global control system

- Can be used as a consumption-dependent global control system for up to 10 compressors
- Excellent optical display and simplest possible operation using a 7” TFT colour touch screen
- Flexible installation into the compressor or into a separate control cabinet possible
- Extremely user-friendly thanks to simple configuration and start-up wizard
- Parameter settings can be saved to a data medium
- Comprehensive statistics can be accessed using the data-logging functionality

Version: Global control system

- Quick access to information about the operating state of the connected compressors
- Graphical display of power and consumption profiles
- Split screen: compressor data and information about the network can be displayed in parallel
- Leaks can be identified and displayed
- Priorities can be allocated
- Energy-saving – all the compressors operate in one pressure tolerance range
- Speed-controlled compressors can be integrated seamlessly into the system
- Can be connected to higher-level control systems or a web server
HEAT RECOVERY

Optimum energy use
HEAT RECOVERY: REDUCE COSTS

Save energy easily and enjoy financial benefits quickly

The energy consumed for the generation of compressed air is converted almost entirely to heat. This is a high potential for savings since one compressed air station with a power requirement of 75 kW during 4000 operating hours, for example, will need approximately 300,000 kWh of power every year. Use this energy in the form of:
- Warm air to supplement space heating
- Warm water to support central heating
- Warm water for industrial water

Heat energy at no additional cost to you!

The cost of fuel oil, gas, and other forms of energy continues to rise. As a result, the use of energy will increasingly influence the competitiveness of many companies. But the recovery of heat energy can boost overall energy efficiency and contribute to the company’s profitability.

At the same time, the required investment is small: On average, related expenses pay for themselves in just a few months. This is an excellent opportunity to reclaim a portion of your operating costs!

Heat recovery: determine your individualised benefits

How can your company specifically benefit from heat recovery? Perform custom calculations for clarity on your investment and payback period. This will give you a solid foundation for making decisions and provide detailed information on why you should take advantage of this opportunity.

Saving money and protecting the environment can be easy

Every litre of fuel oil that you save reduces your CO2 emissions by approximately 2.8 kg. Heat recovery systems pay for themselves after one-half to one year on average, depending on capacity utilisation and the level of energy costs.

Examples of potential energy savings

<table>
<thead>
<tr>
<th>Compressor rated output</th>
<th>Usable heat</th>
<th>Fuel oil savings/year¹</th>
<th>Fuel oil cost savings/year¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>From 6 kW</td>
<td>2.8 kW</td>
<td>700 l</td>
<td>€490.00</td>
</tr>
<tr>
<td>37 kW</td>
<td>27 kW</td>
<td>6,720 l</td>
<td>€4,704.00</td>
</tr>
<tr>
<td>45 kW</td>
<td>32 kW</td>
<td>8,170 l</td>
<td>€5,719.00</td>
</tr>
<tr>
<td>55 kW</td>
<td>40 kW</td>
<td>9,990 l</td>
<td>€6,993.00</td>
</tr>
<tr>
<td>75 kW</td>
<td>54 kW</td>
<td>13,620 l</td>
<td>€9,534.00</td>
</tr>
<tr>
<td>90 kW</td>
<td>65 kW</td>
<td>16,350 l</td>
<td>€11,445.00</td>
</tr>
<tr>
<td>110 kW</td>
<td>80 kW</td>
<td>19,980 l</td>
<td>€13,986.00</td>
</tr>
<tr>
<td>132 kW</td>
<td>95 kW</td>
<td>23,980 l</td>
<td>€16,786.00</td>
</tr>
<tr>
<td>160 kW</td>
<td>115 kW</td>
<td>29,060 l</td>
<td>€20,342.00</td>
</tr>
<tr>
<td>Up to 400 kW</td>
<td>288 kW</td>
<td>72,660 l</td>
<td>€50,870.00</td>
</tr>
</tbody>
</table>

¹ At 2,000 hours heat recovery/year
² At a fuel oil price of 0.70 €/litre and 2,000 hours heat recovery/year

Screw compressors
Warm air for space heating
Possible temperature level: 20 – 25°C above the ambient temperature

Warm water for heating purposes
Possible water temperature up to 70°C

Heat for industrial process water
Possible water temperature up to 70°C

Heated cooling air is used via a duct for space heating
Compressor oil gives its heat to the heating water via plates
Even in the case of leaks, safety heat exchanger prevents oil from entering industrial water

94% usable thermal energy
72% from the oil cooler
13% from the aftercooler
13% from the electric motor

High energy cost savings possible per compressor (see table on left)
6% unusable thermal energy
4% in compressed air
2% radiated heat

ALMiG compressor with integrated or retrofitted heat recovery

Electrical energy is converted almost entirely to heat

www.almig.com/advisor/heat-distribution
SPEED CONTROL
Needs-based adaptation of delivery volumes
INTELLIGENT SYSTEMS YOU CAN RELY ON

Speed-controlled screw compressors

Cost-effective and sustainable: Kind to your wallet and the environment.

According to a study, approx. 80 billion kWh of electricity is used in compressed air systems in the EU each year, more than 10% of the electricity required in industry. So the cost-effectiveness of a compressed air system isn’t about how much it costs to buy, but how much it costs to run on a day-to-day basis. And this is where speed-controlled screw compressors from ALMiG really come into their own:

- Precise adaptation of delivery volumes
- Fewer idle times
- Less load shedding
- Constant line pressure
- Direct drive
- Fewer leakages

Capacity utilisation of the compressor: Flexible tolerance for greater cost-effectiveness.

From experience, we know that most compressors are only used at between 50 and 70% of capacity. The maximum delivery volume is in most cases only used during peak times.

Speed control: The key component of your compressed air system.

By varying the system’s motor speed, you automatically and sensitively adapt its delivery volume to its variable air consumption.

- If you require more compressed air, you need simply increase the motor speed and therefore the compressor speed. The delivery volume increases.
- If you require less compressed air, you need simply decrease the motor speed and therefore the compressor speed. The delivery volume decreases.

Precise adaptation of delivery volumes: No more annoying switching times.

If you’re exploiting your system at 100% capacity, all compressors work at full load. If, however, you require less compressed air, the conventional compressor changes to loaded/idle mode, causing the drive motor to switch. In this situation, you have to take into account the pre-set over-run time. This has a negative impact on your energy bill.

The Variable and V-Drive series vary their power by gently and continually changing speeds, not by abruptly switching on and off.

Delivery volumes are continually adapted to your present requirements, so the process is kind to both your components and your wallet:

- No expensive idle mode, which consumes at least 25 – 30% of the energy consumed at full load.
- No more switching times which place a heavy mechanical load on the components.
Productivity without idle mode: the ALMiG efficiency programme

In idle mode, a compressor consumes around 25 to 30% of the energy consumed at full load. Variable compressors adjust the speed of the compression element automatically and exactly to the value needed for the volume flow required. SCD (Speed Control Direct drive) technology also ensures that only the power that corresponds to the speed is used. So compressors can considerably cut energy costs even when loaded at 70% of capacity.

Less load shedding in fluctuating networks

Fluctuating networks cause the compressor to constantly change from loaded to idle mode (and back again). Each time the compressor changes mode, it sheds its load for around one minute.

A constant line pressure allows you to save a huge amount of energy

Speed-controlled compressors run at a constant operating pressure \((p - 0.1\) bar\). Because high pressure always involves consuming greater amounts of energy, speed-controlled compressors allow you to make huge energy savings (1 bar higher pressure = 6 – 8% greater energy consumption).

ALMiG direct drive: The frictional connection

The compressor block is directly driven by the drive motor — and without any transmission loss.

This brings major benefits with it:

- Maximum power transfer
- Constant high efficiency of up to 99.9% over its entire working life
- Less noise and less maintenance effort than with V-belt and gear drives
- Excellent reliability.

Direct drive vs V-belt drive savings:

- V-belt drive (up to 96 – 97%)
- Direct drive (up to 99.9%) 4,000 h/year, 60 kW motor, 2.4 kW x 4,000 = 9,600 kWh

Fewer leakages thanks to reduced pressure:

Speed control provides the answer

Almost all compressed air lines have leakages. The amount they leak depends on the pressure in the piping, among other things. The average leakage rate of a compressed air station is around 20 – 30%. By decreasing the pressure by just 1 bar (e.g. by controlling the speed), these leakages drop by approx. 10%.

In addition, speed-controlled compressors with direct drive are very energy-efficient (no current peaks) and are also much quieter than comparable models with a V-belt drive.